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Evaluation of some three-body variational integrals
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Physik Department, Technische Universita¨t-München, D-85747-Garching, Germany

~Received 2 March 1998; revised manuscript received 9 June 1998!

Stable recurrence relations are presented for the numerical computation of the Calais-Lo¨wdin integrals
*dr1dr2r 1

l 21r 2
m21r 12

n21exp$2ar12br22gr12% ~wherel , m, andn are integers, anda, b, andg are real! when
the indicesl , m, or n are negative. Useful formulas are given for particular values of the parametersa, b, and
g. @S1063-651X~98!03111-0#

PACS number~s!: 02.70.Rw, 31.15.Pf
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I. INTRODUCTION

When dealing with the three-body variational proble
with Hylleraas basis, it is usually necessary to make ext
sive use of integrals of the general form@1#

I ~ l ,m,n;a,b,g!5
1

16p2 E dr1dr2r 1
l 21r 2

m21r 12
n21

3exp$2ar 12br 22gr 12%, ~1!

wherer 15ur1u, r 25ur2u and r 125ur22r1u.
For the case ofl , m, and n non-negative~that is, non-

negative powers ofr 1 , r 2 , andr 12 once the volume elemen
has been taken into account!, powerful, simple, and stable
recurrence relations that permit the numerical calculation
these integrals can be found in the literature@2#. However, it
is sometimes essential to have also an expression for on
the integer indices being negative. For instance, that hap
in the atomic problem when one wants to consider the m
value of ther 12

22 operator@3# or relativistic corrections@4#, or
in the nuclear problem when nonlocal terms are included
Yukawa-like interaction@5#. In some cases, the integra
must be computed in every step of the nonlinear optimiza
procedure, and hence there is a clear need for having a q
and reliable algorithm to compute them. The specific ca
I (1,1,21) and I (0,21,21) were already considered i
Refs. @3# and @6#, respectively. Forg50 much work has
been done@2,7–11#, also including explicitly the coupling o
the angular momentum of the two dynamical particles@12#.
Some work has been devoted to the analogous integrals
four- or more-body problems@6,7,11,13,14#.

The method proposed in this work to obtain the integr
~1! is especially useful when the same exponential coe
cientsa, b, and g appear in several elements of the var
tional basis.

II. GENERAL PROPERTIES OF I „ l ,m,n…

To study the general properties of the integral~1! for l ,
m, andn ~possibly negative! integer numbers anda, b, and
g real it is convenient to make use of perimetric coordina
@15#,
PRE 581063-651X/98/58~5!/6781~6!/$15.00
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u52r 11r 21r 12,

v5r 12r 21r 12,

w5r 11r 22r 12, ~2!

in terms of which the initial integral reads

I ~ l ,m,n;a,b,g!

522~ l 1m1n13!I pS l ,m,n;
b1g

2
,

a1g

2
,

a1b

2 D , ~3!

where

I p~ l ,m,n;a,b,c!

5E
0

`

duE
0

`

dvE
0

`

dw~v1w! l~u1w!m~u1v !n

3exp$2au2bv2cw%. ~4!

The integralI p is explicitly invariant under permutation o
conjugated pairs of parameters$( l ,a),(m,b),(n,c)%, and
therefore

I ~ l ,m,n;a,b,g!5I ~m,l ,n;b,a,g!5I ~n,m,l ;g,b,a!,
~5!

symmetry that will be used throughout this work.
The long range convergence ofI p is ensured ifa, b, and

c are positive real numbers, that is, if

a1b.0, a1g.0, and b1g.0. ~6!

That means that one of the exponential parameters,a, b, or
g, can be zero or negative, provided that the other two
bigger than the absolute value of the former. Note also t
one of the exponential coefficients ofI p can be zero if the
power of the corresponding integration variable is negat
and high enough. For instance,a50 with l 50 and m5n
521 would yield a convergent result. Anyhow, this is a
almost useless case for the variational problem, because
higher power integrals~that very likely should also be con
sidered! a50 would lead to divergent quantities. From no
on, we assume that the requirements~6! are fulfilled.

The study of the short range convergence can be strai
forwardly done case by case. Summarizing, forl , m, andn
6781 © 1998 The American Physical Society
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6782 PRE 58JOSÉCARO
integer, anda, b, andg real such that the conditions~6! are
fulfilled, the integral~1! is convergent if and only if

l>21, m>21, n>21 and l 1m1n>22. ~7!

To have a procedure to generate the whole set of integ
~1! one needs relations for the casesI ( l ,m,21) and I ( l ,
21,21) wherel andm are non-negative.

As soon as we have checked that the integral we are lo
ing for is convergent, integration over one parameter can
applied to lower the conjugated power,

I ~ l ,m,n;a,b,g!5E
g

`

dcI~ l ,m,n11;a,b,c!. ~8!

On the other hand, derivation can always be used to incre
indices,

~2]a!pI ~ l ,m,n;a,b,g!5I ~ l 1p,m,n;a,b,g!. ~9!

These properties, together with

I ~0,0,0;a,b,g!5~a1b!21~a1g!21~b1g!21, ~10!

are useful to derive all the integrals. Note also that forl
.0

I ~ l ,m,n;la,lb,lg!5l2~ l 1m1n13!I ~ l ,m,n;a,b,g!,
~11!

that is, for givenl , m, andn, I is a homogeneous function o
a, b, andg. This fact, together with properties~5! and ~9!
yields a quite general recursion. Indeed, differentiating w
respect tol in the equation above one gets the recurre
relation

~ l 1m1n13!I ~ l ,m,n;a,b,g!

5aI ~ l 11,m,n;a,b,g!1bI ~ l ,m11,n;a,b,g!

1gI ~ l ,m,n11;a,b,g!, ~12!

valid for well defined integrals, in our casel , m, and n
fulfilling conditions ~7!. In general, this recursion is of little
utility, for to use it downwards, which is the obvious dire
tion, one would have to know the value of the integrals o
plane l 1m1n5const. We will take profit of a particula
case of Eq.~12! in Sec. IV.

III. CASE I „ l ,m,21… WITH l ,m>0

For the family of integralsI ( l ,m,21;a,b,g) with l ,m
>0, a variation of the method exposed in Ref.@2# can be
applied. The recurrence relation that one gets is the follo
ing:

I ~ l ,m,21;a,b,g!5
1

a1b
@ l I ~ l 21,m,21!

1mI~ l ,m21,21!1B~ l ,m!#,

~13!

where
ls

k-
e

se

h
e

a

-

B~ l ,m;a,b,g!5 l !m! E
g

`

dc~a1c!2 l 21~b1c!2m21,

~14!

which is a symmetric function under (l ,a)↔(m,b) ex-
change, can be obtained through the relation

B~ l ,m!5
1

a2b
@ lB~ l 21,m!2mB~ l ,m21!1C~ l ,m!#.

~15!

Here the functionC( l ,m) reads

C~ l ,m;a,b,g!

55
~m21!! ~b1g!2m if l 50 and m.0

2~ l 21!! ~a1g!2 l if l .0 and m50

ln
a1g

b1g
if l 50 and m50

0 otherwise

~16!

and is defined so that the recursion~15! holds also forl
5m50 althoughB(0,21) andB(21,0) are divergent. Note
that C( l ,m) is antisymmetric under (l ,a)↔(m,b).

Unfortunately, in the recursion~15! subtractions are in-
volved, and hence one must look at the stability agai
roundoff, in particular whena andb are close to each other

It is also possible to relateB( l ,m) to Gauss hypergeomet
ric function, 2F1 @16#, yielding

B~ l ,m;a,b,g!5
l !m!

m1 l 11
~a1g!2 l 21~b1g!2m

32F1~1,l 11;m1 l 12;z!, ~17!

wherez[ (a2b)/(a1g). The use of the integral represen
tation of the hypergeometric function gives

B~ l ,m;a,b,g!5~ l 1m!! ~a1g!2 l 21~b1g!2m

3E
0

1

dt
t l~12t !m

12zt
. ~18!

From the definition~14! it is possible to prove the equa
tion

B~ l 11,m!1B~ l ,m11!

5 l !m! ~a1g!2~ l 11!~b1g!2~m11! ~ l ,m>0!.

~19!

Plugging this relation in Eq.~15! yields

~ l 1m!B~ l 21,m!2~a2b!B~ l ,m!

2~ l 21!!m! ~a1g!2 l~b1g!2m50, ~20!

valid for m>0 andl .0. This equation permits one to lowe
one unit the indexl of B( l ,m) with numerical stability if
a.b. In the opposite case, the symmetry ofB( l ,m) can be
used to lower the indexm ~see Fig. 1!.
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On the other hand, using the Gauss relations for cont
ous hypergeometric functions one obtains

mB~ l 11,m21!1~m2 l j!B~ l ,m!2 l jB~ l 21,m11!50,
~21!

wherej[12z5 (b1g)/(a1g). This relation defines a re
cursion that can be used to move on the diagonalsm1 l
5const. As shown in Fig. 1, the straight linem( l )5j l on the
l -m-plane separates the stability regions of the recurs
~21!, so that one can move with stability from this line
diagonal steps.

The final recipe to compute the set ofI ( l ,m,
21;a,b,g) for l ,m<N is the following ~see Fig. 1!. First,
two B’s are to be computed numerically to the required
curacy, namely,

BS F 2N

11jG ,2N2F 2N

11jG D and

BS F 2N

11jG11,2N2F 2N

11jG21D ~22!

~respectively, pointsP1 andP2 in Fig. 1!. Then the recursion
~21! is used to generate all needed starting points to use
recursion~20! leftwards ~downwards! if a.b(a,b). Fi-
nally, theB’s obtained in this way are introduced in Eq.~13!.
To generate the two initialB’s one can compute the integra
in Eq. ~18! by Gauss-Legendre quadrature. To optimize
computation of the quadrature a change of variable
needed. First, we use the symmetry ofB( l ,m) to render 0
<z,1. Next, we apply in Eq.~18! the change of variable
@ t→s5s(t)#

s~ t !5 H t
ln~2-z-t !

if 0<z,0.8
if 0.8<z<0.99. ~23!

For values ofz greater than 0.99 the hypergeometric functi
can be computed using the transformation formula 15.3.1
Ref. @16#. With the prescription above, more than fiftee

FIG. 1. Stability lines of the recursions for the calculation
I ( l ,m,21). The solid arrows refer to the stable flux of the rec
sion ~21!. The open ones refer to the recursion~20!, but only if a
.b. In the opposite case, the symmetric of Eq.~20! under
( l ,a)↔(m,b) exchange can be used to move downwards with
bility.
u-

n

-

he

e
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stable figures were obtained using 32 Gauss-Legendre p
for 2N<60. Note that the prescription~23! has been opti-
mized for the computation of the two initialB’s given in the
expression~22!, and will not provide a similar accuracy fo
arbitrary values ofl andm.

The particular casea5b is specially simple. Indeed, in
that case theB function to be included in Eq.~13! is

B~ l ,m;a,a,g!5
l !m!

l 1m11
~a1g!2~ l 1m11!, ~24!

and the calculations are numerically stable. The casea5b is
not only a mere academic example. In many practical pr
lems the variational basis is chosen so that any element
the same exponential coefficient both for the coordinatesr 1
and r 2 . If the I ( l ,m,21) integrals are required for a phys
cal problem, then it is sensible to check whether such a b
can produce the required accuracy. This selection was
cessfully used in the context of a nuclear theory problem@5#.

In Table I we give some particular values ofI ( l ,m,
21;a,b,g) with fourteen significant figures to provide th
reader with checking points.

IV. CASE I „ l ,21,21… WITH l>0

To generate the set of integralsI ( l ,21,21) use can be
made of the relation

aI ~ l 11,21,21;a,b,g!

5~ l 11!I ~ l ,21,21;a,b,g!2bI ~ l ,0,21;a,b,g!

2gI ~ l ,21,0;a,b,g!, ~25!

which is valid for l>0. This equation is easily obtained as
particular case of recurrence~12!. For l 50 direct calculation
yields

I ~0,21,21;a,b,g!5
1

2a Fp2

6
2 ln

a1g

b1g
ln

a1b

b1g

2Li2S b2a

b1g D2Li2S g2a

b1g D G
~26!

~see also Ref.@6#!, where Li2(z)52*0
zdy y21ln(12y) is the

dilogarithm function.
As said, the expression~12! is not applicable for the cas

l 5m5n521. Instead, one gets

aI ~0,21,21;a,b,g!1bI ~21,0,21;a,b,g!

1gI ~21,21,0;a,b,g!5
p2

4
. ~27!

To fix the constant in the right-hand side, we had to ma
explicit use of the expression~26!.

The recursion~25!, which in general is numerically un
stable upwards, can be used with stability to decrease
index l if a.0, which is the interesting case in physics. B
then, one needs as a starting point the integral with the h
est wantedl . As can be derived from Eqs.~8!–~10!, that
integral can be obtained through the computation of
quadrature

-
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TABLE I. Some values for the integralsI ( l ,m,21;1,b,g). For instance,I (20,15,21;1,0.2,5)52.919106633508831036.

I ( l ,m,21;1,b,g)
~b,g! l 510, m50 l 510, m55 l 520, m515 l 540, m510

~0.05,0.05! 2.5097803893512@107# 1.1550294761619@114# 5.8496691184166@145# 3.7263930880406@165#

~0.05,0.20! 1.0069028364788@107# 4.9856655589152@112# 1.1263701557234@141# 1.5245149068463@164#

~0.05,1.00! 2.1231968038912@106# 6.1362890397889@111# 1.8814741050023@139# 2.5445500764172@163#

~0.05,2.00! 1.0610620020573@106# 3.0134288353911@111# 9.0355811977946@138# 1.2652815721954@163#

~0.05,5.00! 4.2435098606331@105# 1.1992798691243@111# 3.5754444925655@138# 5.0533341605295@162#

~0.20,0.05! 5.9511548712149@106# 1.4149826065364@112# 7.4333291536966@139# 4.6331742767202@161#

~0.20,0.20! 2.5245340864963@106# 3.8096117209107@111# 1.5683171148516@138# 1.3617534581186@161#

~0.20,1.00! 4.9479973346792@105# 7.1119098709184@110# 1.5019778106939@137# 2.7821828122703@160#

~0.20,2.00! 2.4501414762596@105# 3.5414728355891@110# 7.3432360158513@136# 1.3921604053583@160#

~0.20,5.00! 9.7730721646852@104# 1.4149098737738@110# 2.9191066335088@136# 5.5698482446321@159#

~1.00,0.05! 2.3506936424270@105# 2.1738100662595@108# 1.8638785541149@130# 1.3896745377911@153#

~1.00,0.20! 6.8960382056483@104# 9.7511110023298@107# 7.0043082969132@129# 2.2092326515384@151#

~1.00,1.00! 2.6754225852273@103# 2.0193624551498@107# 1.4992836690734@129# 1.5383073655665@149#

~1.00,2.00! 9.7180274971942@102# 1.0013416984929@107# 7.5130229486046@128# 6.9573280539039@148#

~1.00,5.00! 3.5921654332679@102# 3.9932069716804@106# 3.0070041814429@128# 2.7138972320215@148#

~2.00,0.05! 5.6374109387576@104# 1.4250979709052@106# 9.1546004403515@124# 2.9503794635963@149#

~2.00,0.20! 1.5196492752737@104# 4.7607751878871@105# 1.4095247283656@124# 1.9130948733180@147#

~2.00,1.00! 1.5320840275499@102# 3.8998899902794@104# 7.9782256684551@122# 8.8675800592916@140#

~2.00,2.00! 1.6829755898961@101# 1.6286558844196@104# 3.5727727922307@122# 8.6310437705915@139#

~2.00,5.00! 4.3389324770986@100# 6.1452543996272@103# 1.3850914702513@122# 2.9003763096969@139#

~5.00,0.05! 8.9272368511676@103# 2.0896049079214@103# 1.2958485756621@118# 4.7703597474580@144#

~5.00,0.20! 2.3569834307325@103# 5.6914967826940@102# 1.0121437234633@117# 2.4003665222216@142#

~5.00,1.00! 1.5138128168377@101# 6.1945864757004@100# 2.8220667212483@113# 8.7853148834688@133#

~5.00,2.00! 3.2220328921320@201# 5.5803922147916@201# 1.0214473659965@112# 1.1612978333117@128#

~5.00,5.00! 3.4970794973642@203# 1.0465458754289@201# 2.1723867163698@111# 1.6228394644288@124#
th
r
e
e
s
b
in

s-
I ~ l ,21,21;a,b,g!

5
l !

2 S 2

b1g D l 11E
0

1

dt
1

t
Gl S 2a

b1g
,

2b

b1g
;

1

t D ,

~28!

where we have defined

Gl~a,b;y!5
1

~a1y! l 11 H ln
~a1b12~y21!!~a2b12y!

~a1b!~a2b12!

1 (
m51

l
1

m F S a1y

a1bD m

1S a1y

a2b12D m

2S a1y

a2b12yD m

2S a1y

a1b12~y21! D
mG J .

~29!

Note that the integrand is positive, and that the sum in
functionGl is very efficiently computed in a single loop. Fo
values ofa, b, and g of the same order of magnitude th
quadrature converges very quickly for not very small valu
of l ( l .5). This is not the case when one of the parameter
larger than the other, but then a simple change of varia
helps to recover convergence. For instance, the follow
prescription of changes of variable@ t→s5s(t)#
e

s
is
le
g

s~ t !5H lnS t1
b1g

2a D if a.~ l /10! ~b1g!

lnS 11
a1min$b,g%

2~b1g!
2t D otherwise

~30!

produces the accuracies shown in Table II. Forl 510 ~re-

TABLE II. Number of stable figures@2 log10(relative-error)# in
I ( l ,21,21;a,b,g) obtained using different numbers of Gaus
Legendre points (NGL) in the quadrature~28! with the prescription
~30!. The ratio b/a moved in the range@0.01,104#, and g/a in
@1024,104#.

l NGL510 NGL516 NGL524 NGL532

5 5.9 8.9 11.1 12.6
6 6.1 9.4 12.1 13.9
7 5.6 9.6 12.9 14.9
8 5.6 9.7 13.6 15.4
9 5.9 10.3 14.1 15.3

10 5.4 9.3 14.4 15.3
15 5.1 8.7 14.0 15.2
20 5.2 8.3 13.6 15.0
25 4.7 8.2 12.9 14.9
30 5.0 8.1 12.1 14.8
35 4.7 7.5 11.4 14.8
40 4.5 7.0 11.0 14.6
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TABLE III. Some values for the integralsI ( l ,21,21;1,b,g). For instance,I (10,21,21;1,0.01,10)53.28544184665983104.

I ( l ,21,21;1,b,g)
~b,g! l 510 l 520 l 530 l 540

~0.01,0.01! 6.6191662489867@106# 3.6251447231256@118# 3.2983926561168@132# 8.5733728363337@147#

~0.01,0.20! 1.7540859652228@106# 5.3112685642066@117# 3.3942282862188@131# 6.9857465097091@146#

~0.01,0.50! 6.8609259644037@105# 2.0155302235322@117# 1.3180581225243@131# 2.7475204208958@146#

~0.01,1.00! 3.3243271983196@105# 9.9937617391729@116# 6.5672190824270@130# 1.3709460938605@146#

~0.01,2.00! 1.6469713752668@105# 4.9876597990304@116# 3.2808597542740@130# 6.8512909302258@145#

~0.01,5.00! 6.5729176667975@104# 1.9940611043105@116# 1.3120390818053@130# 2.7401331921302@145#

~0.01,10.00! 3.2854418466598@104# 9.9695938948872@115# 6.5599782224617@129# 1.3700392619726@145#

~0.20,0.20! 4.5604766596349@105# 3.5127689695513@116# 4.9063595251091@129# 2.0412224928657@144#

~0.20,0.50! 1.4318580613654@105# 7.2132201828707@115# 8.1925006515660@128# 3.0132668197157@143#

~0.20,1.00! 6.1814890074087@104# 3.2566277622792@115# 3.8027988040087@128# 1.4138666122607@143#

~0.20,2.00! 2.9651034471161@104# 1.5963963424310@115# 1.8718211282572@128# 6.9707881275722@142#

~0.20,5.00! 1.1742458080974@104# 6.3522447488220@114# 7.4555535110623@127# 2.7776640095065@142#

~0.20,10.00! 5.8633250910678@103# 3.1737770991220@114# 3.7255334615001@127# 1.3880777482000@142#

~0.50,0.50! 2.7602780782403@104# 2.1429404549106@114# 3.1095312824899@126# 1.3602027847527@140#

~0.50,1.00! 7.8596287095799@103# 4.2261129342848@113# 5.2077776493094@125# 2.0657542275279@139#

~0.50,2.00! 3.2906652367190@103# 1.8845025819044@113# 2.3675994785514@125# 9.4583791413986@138#

~0.50,5.00! 1.2667740672550@103# 7.3501151392020@112# 9.2602020503771@124# 3.7039195719454@138#

~0.50,10.00! 6.3029915005903@102# 3.6623979936588@112# 4.6157947923024@124# 1.8465337659004@138#

~1.00,1.00! 9.2233071085062@102# 3.9012855025163@111# 3.1367380768282@122# 7.6500307975383@134#

~1.00,2.00! 2.1119403628357@102# 6.5569071489222@110# 4.6001747109760@121# 1.0314129070250@134#

~1.00,5.00! 7.2422587486309@101# 2.3596051913831@110# 1.6728442527147@121# 3.7666888585022@133#

~1.00,10.00! 3.5623476884278@101# 1.1649070967644@110# 8.2662607382138@120# 1.8620745501178@133#

~2.00,2.00! 8.9219060942223@100# 6.4071580456640@107# 8.8443126974508@116# 3.7177770572299@127#

~2.00,5.00! 1.3397156572731@100# 7.4723481641427@106# 9.1598047862917@115# 3.5719240038509@126#

~2.00,10.00! 6.2645017020798@201# 3.5448536509329@106# 4.3596533454989@115# 1.7025891413660@126#

~5.00,5.00! 3.7697615446040@203# 2.6042296175688@101# 3.4861019106182@107# 1.4250284687126@115#

~5.00,10.00! 6.8653568463440@204# 3.7115610730907@100# 4.4359819939145@106# 1.6880938843748@114#

~10.00,10.00! 4.5242997355095@206# 7.2459128782254@205# 2.2554462512897@201# 2.1460242640172@104#
c-

,

a

el

e
he

-

the

to
spectively, 20, 30, and 40! more than 3800 integrals per se
ond ~respectively, 2500, 1800, and 1400! were obtained with
more than fourteen stable figures~32 Gauss-Legendre points
see Table II! in an inexpensive computer~a PC with a 200
MHz processor!.

The prescription~30! is not useful if bothb and g are
much smaller thana ~e.g.,b,g,0.01a). However, the inte-
grals for this case can be safely generated without signific
loss of accuracy using the recursion~25! upwards. The rela-
tive error in thel th integral accumulated because of canc
lations, which grows withl , can be then approximated as

E„I ~ l ,21,21!…5
p2

4

l !

a l 11

~machine precision!

I ~ l ,21,21!
. ~31!

For example,I (60,21,21;1,0.01,0.01).0.768360!, and
the relative error due to cancellations in the repeated us
Eq. ~25! to obtain this integral is only about three times t
machine precision. For smaller values ofb andg the accu-
racy is bigger. Note that Eq.~26! is not appropriate to evalu
ate I (0,21,21) whenb andg are smaller thana. A better
expression for this case is
nt

-

of

I ~0,21,21;a,b,g!5
1

4a Fp222Li2S b1g

a1b D22Li2S b1g

a1g D
2 ln

a1b

a
ln

~a1b!~a1g!

~a2g!2

2 ln
a1g

a
ln

~a1b!~a1g!

~a2b!2

12 ln
b1g

a
ln

~a1b!~a1g!

~a2b!~a2g!G ,
~32!

where the dilogarithm function can be computed through
expansion Li2(x)5Sk51

` xk/k2. For x,0.02, corresponding
to b,g,0.01a, eight terms in this expansion are enough
obtain sixteen stable figures.

A few particular cases ofI ( l ,21,21) are readily ob-
tained from the recursion~25!. Indeed, fora50 andl>0 we
have

I ~ l ,21,21;0,b,g!5
1

l 11
@bI ~ l ,0,21;0,b,g!

1gI ~ l ,21,0;0,b,g!#. ~33!
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The specific casea5b5g reads

I ~ l ,21,21;a,a,a!5
l !

~2a! l 11 Sl , ~34!

where the coefficients

Sl5 (
m50

` S (
i 50

l 1m
1

i 11D 22m

l 1m11
~35!

are to be computed only once. Forl<100 one does not nee
more than 52 terms to achieve sixteen stable figures inSl
without using any numerical procedure to accelerate con
gence. The first of these coefficients isS05p2/6. Finally, for
I ( l ,21,21;a,0,0) one has

I ~ l ,21,21;a,0,0!5
p2

4

l !

a l 11 . ~36!

Some values ofI ( l ,21,21;a,b,g) are presented in
Table III.
.

H

r-

V. SUMMARY

Some recurrence relations to compute the integrals~1! for
all negative integer parameters (l , m, andn) have been pre-
sented. The stability of these recursions has been inve
gated, and algorithms have been given to use them with
loss of accuracy due to cancellations. The integralsI ( l ,m,
21;a,b,g) ~where l ,m>0) can be generated at low com
puting cost. For the integralsI ( l ,21,21;a,b,g) a quadra-
ture involvingN11 terms is needed, whereN is the highest
requiredl anda is assumed to be positive. Specially simp
algorithms are given for the casesI ( l ,m,21;a,a,g), I ( l ,
21,21;0,b,g), I ( l ,21,21;a,a,a), and I ( l ,21,
21;a,0,0).

ACKNOWLEDGMENTS

The author gratefully thanks L. L. Salcedo for helpf
comments on a previous version of the manuscript, and
Buendı´a for some references. This work was supported
theDirección General de Ensen˜anza Superior~Spanish Edu-
cation and Culture Ministry! through a postdoctoral gran
and Project No. PB95-1204.
hys.

@1# J. L. Calais, and P. O. Lo¨wdin, J. Mol. Spectrosc.8, 203

~1962!.
@2# R. A. Sack, C. C. J. Roothaan, and W. Kolos, J. Math. Phys8,

1093 ~1967!.
@3# A. J. Thakkar and V. H. Smith, Jr., Phys. Rev. A15, 1 ~1977!.
@4# G. Breit, Phys. Rev.34, 553 ~1929!.
@5# J. Caro, C. Garcı´a Recio, and J. Nieves, Report No. NUCL-T

9801065~unpublished!.
@6# D. M. Fromm, and R. N. Hill, Phys. Rev. A36, 1013~1987!.
@7# P. J. Roberts, J. Chem. Phys.43, 3547~1965!.
@8# N. Solony, C. S. Lin, and F. W. Birss, J. Chem. Phys.45, 976

~1966!.
@9# L. Hambro, Phys. Rev. A5, 2027~1972!.
@10# G. F. Thomas, F. Javor, and S. M. Rothstein, J. Chem. P

64, 1574~1976!.
@11# F. W. King, Phys. Rev. A44, 7108~1991!.
@12# Z-C. Yan, and G. W. F. Drake, Chem. Phys. Lett.259, 96

~1996!.
@13# I. Porras and F. W. King, Phys. Rev. A49, 1637~1994!.
@14# Z-C. Yan and G. W. F. Drake, J. Phys. B30, 4723~1997!.
@15# C. L. Pekeris, Phys. Rev.112, 1649~1958!.
@16# Handbook of Mathematical Functions, edited by M.

Abramowitz, and I. A. Stegun~Dover Publications, New York,
1972!.


