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Stable recurrence relations are presented for the numerical computation of the Caldis-limtegrals
Jdrodror P exp{—ar,— Br,— ¥y, (Wherel, m, andn are integers, and, 8, andy are real when
the indiced, m, or n are negative. Useful formulas are given for particular values of the paramgtgrand
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. INTRODUCTION U=—Tq+ T,
When dealing with the three-body variational problem v=r1—Ty+ 0o,
with Hylleraas basis, it is usually necessary to make exten-
sive use of integrals of the general fofit] W=Try+T2—r1, (2

in terms of which the initial integral reads

1 .
l(l.m.n; e, B.7)= 75— f drodrort et L(I,m,n;a,B,7)

Bty aty a+p
2 2 " 2 ) ©)

X exp{—ar,— Br,— yra, (1) =2('+m+“+3)lp(l,m,n;

where
wherer=|rq|, ro=|r,| andr,=|r,—rq|.
For the case of, m, andn non-negative(that is, non-  1,(I,m,n;a,b,c)

negative powers ofq, r,, andr,, once the volume element
has been taken into accounpowerful, simple, and stable =JwduJ'wvawdw(v+w)'(u+w)m(u+v)“
recurrence relations that permit the numerical calculation of 0 0 0
these integrals can be found in the literat[@¢ However, it
is sometimes essential to have also an expression for one of X &XPl—au—bv—cw;. 4)
the integer indices being negative. For instance, that happe
in the atomic problem when one wants to consider the mean_ " .

-5 A . conjugated pairs of parametef¢l,a),(m,b),(n,c)}, and
value of ther ;,” operator 3] or relativistic correction§4], or therefore
in the nuclear problem when nonlocal terms are included in a
Yukawa-like interaf:tion[S]. In some cases, the integral_s L mn;a, B, y)=1(m,1,n; B,a,y)=1(n,m,l:y,8,a),
must be computed in every step of the nonlinear optimization (5)
procedure, and hence there is a clear need for having a quick
and reliable algorithm to compute them. The specific casesymmetry that will be used throughout this work.
1(1,1-1) and I(0,—1,—1) were already considered in The long range convergence lof is ensured ifa, b, and
Refs.[3] and [6], respectively. Fory=0 much work has c are positive real numbers, that is, if
been dong¢2,7-11], also including explicitly the coupling of

e integrall , is explicitly invariant under permutation of

the angular momentum of the two dynamical partidl&g). a+pB>0, a+y>0, and B+y>0. (6)
Some work has been devoted to the analogous integrals for )
four- or more-body problemgs,7,11,13,14 That means that one of the exponential parameters, or

The method proposed in this work to obtain the integralsy. €an be zero or negative, provided that the other two are

cients e, B, and y appear in several elements of the varia-One of the exponential coefficients gf can be zero if the
tional basis. power of the corresponding integration variable is negative

and high enough. For instanca=0 with |=0 andm=n
=—1 would yield a convergent result. Anyhow, this is an

Il. GENERAL PROPERTIES OF 1(I,m,n) a!most useless case for the varlatlonal problem, because for
higher power integral¢that very likely should also be con-
To study the general properties of the integiBl for I, sidered a=0 would lead to divergent quantities. From now

m, andn (possibly negativeinteger numbers and, 8, and  on, we assume that the requiremef@sare fulfilled.
yreal it is convenient to make use of perimetric coordinates The study of the short range convergence can be straight-
[15], forwardly done case by case. Summarizing, lfom, andn
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integer, andx, B, and y real such that the condition§) are
fulfilled, the integral(1) is convergent if and only if

I=—1, m=-1, n=—-1 and l+m+n=-2. (7)

oo

B(I,m;a,B,y)=I'm! j de(a+c)™' "Y(B+c) ™Y,
' 14

which is a symmetric function under,@)«(m,B) ex-

To have a procedure to generate the whole set of integra&ange can be obtained through the relation

(1) one needs relations for the cadd$,m,—1) andI(l,
—1,—1) wherel andm are non-negative.

1
As soon as we have checked that the integral we are look- B(l,m)= m['BU —1m)—mB(I,m—1)+C(l,m)].
ing for is convergent, integration over one parameter can be (15)

applied to lower the conjugated power,

I(I,m,n;a,,B,y)zfmdcl(l,m,nJrl;a,B,c). (8
Y

On the other hand, derivation can always be used to increase

indices,
(=3 )°1(1,mn;e,B,y)=1(I+p.mn;e,B,y).  (9)
These properties, together with
1(0,0,0i2,8,7)=(a+B) aty) H(B+y) ! (10

are useful to derive all the integrals. Note also that Xor
>0

L(,m,n; e, A\B,Ny) ="M 31 (| mn:a,B,7y),
(11

that is, for giverl, m, andn, | is a homogeneous function of
a, B, and y. This fact, together with propertigs) and (9)

yields a quite general recursion. Indeed, differentiating with

Here the functiorC(l,m) reads

C(l,m;a,B,7)
(m—1)!(B+y)™ ™ if =0 and m>0
—(=D!(at+y)"" if I>0 and m=0
= aty
In By
0 otherwise

if =0 and m=0

(16)

and is defined so that the recursi¢tb) holds also forl
=m=0 althoughB(0,— 1) andB(— 1,0) are divergent. Note
that C(l,m) is antisymmetric underl (a) —(m,B).

Unfortunately, in the recursiofl5) subtractions are in-
volved, and hence one must look at the stability against
roundoff, in particular whemx and 8 are close to each other.

It is also possible to relatd(l,m) to Gauss hypergeomet-
ric function, ,F, [16], yielding

i i ['m!
respect ton in the equation above one gets the recurrence B(l.m: _ 4B )M
relation (I,m;a,B,7y) m+|+1(a Y) (B+y)
(I+m+n+3)I1(I,m,n;a,B,7) XoF (11 +1;m+1+2;2), 17)

=al(l+1mn;a,B8,v)+B8l1(I,m+1n;a,8,v)
+vyl(l,mn+1;a,8,v), (12)

valid for well defined integrals, in our cade m, andn
fulfilling conditions (7). In general, this recursion is of little

utility, for to use it downwards, which is the obvious direc-

wherez= (a— B)/(a+ y). The use of the integral represen-
tation of the hypergeometric function gives
B(l,m;a,B,y)=(I+m)!(aty) ' "H(B+y) ™"

lrq _+\ym
Xfldu_

0 t 1-1zt (18)

tion, one would have to know the value of the integrals on a

plane | + m+n=const. We will take profit of a particular
case of Eq(12) in Sec. IV.
lll. CASE I(I,m,—1) WITH |I,m=0

For the family of integrald (I,m,—1;«,B,y) with I,m
=0, a variation of the method exposed in REI] can be

From the definition(14) it is possible to prove the equa-
tion

B(l+1m)+B(l,m+1)

=lml(a+y) " "V(B+y) ™D (1,m=0).
(19

applied. The recurrence relation that one gets is the follow-

ing:

I(I,m,—l;a,,B,y):ﬁ[ll(l—l,m,—l)

+ml(l,m—1,—1)+B(l,m)],
(13

where

Plugging this relation in Eq15) yields
(I+m)B(I—=1m)—(a—B)B(l,m)
—(=D!ml(a+y) (B+y)""=0, (20

valid for m=0 andl>0. This equation permits one to lower
one unit the indeX of B(l,m) with numerical stability if
a> . In the opposite case, the symmetryByfi,m) can be
used to lower the inder (see Fig. L
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L L stable figures were obtained using 32 Gauss-Legendre points
- | —> absolute stability || for 2N<60. Note that the prescriptio(23) has been opti-
ol R e SE“:.':Y f°r.n‘;‘>'3 ] mized for the computation of the two initi’s given in the
. W) | '_ _s_o ' g_ p?' _ expression22), and will not provide a similar accuracy for
o ] arbitrary values of andm.
<« | S The particular caser= g is specially simple. Indeed, in
§ e £ that case thd® function to be included in Eq13) is
T P P ] I'm!
AN Bl.ma,a,y)= 77 (at y) b (24
<< e
T S \ . and the calculations are numerically stable. The e&s¢ is
°5 : é — 1'0 ——— 1'5 o 20 not only a mere academic example. In many practical prob-

lems the variational basis is chosen so that any element has
l the same exponential coefficient both for the coordinates
andr,. If the I(I,m,—1) integrals are required for a physi-
cal problem, then it is sensible to check whether such a basis
sion (21). The open ones refer to the recursi@®), but only if can produce the required accuracy. This selection was suc-
~ 4. In the opposite case, the symmetric of E@0) under cessfully used in the context of a nuclear theory problBn

(I, a)—(m, ) exchange can be used to move downwards with sta- N Table | we give some particular values ofl,m,
bility. —1;a,8,y) with fourteen significant figures to provide the

reader with checking points.
On the other hand, using the Gauss relations for contigu-
ous hypergeometric functions one obtains IV. CASE I(I,-1,—1) WITH =0

mB(l+1m—1)+(m—1&)B(l,m)—1£B(I—1,m+1)=0, To generate the set of integrdldl,—1,—1) use can be
(21) made of the relation

FIG. 1. Stability lines of the recursions for the calculation of
I(I,m,—1). The solid arrows refer to the stable flux of the recur-

whereé=1—z= (B+ v)/(a+v). This relation defines a re- al(l+1,-1-1a,B,7)

cursion that can be used to move on the diagomaisl =(1+D)1(1,-1,-1:a,8,9) - B1(1,0—1:a,8,7)
=const. As shown in Fig. 1, the straight ling1) = &I on the
I-m-plane separates the stability regions of the recursion —y(1,-1,0;a,8,7), (29

(21), so that one can move with stability from this line in
diagonal steps.

The final recipe to compute the set of(l,m,
—1;a,8,y) for I,m=<N is the following (see Fig. 1 First,

which is valid forl =0. This equation is easily obtained as a
particular case of recurren€g?). Forl =0 direct calculation
yields

two B’s are to be computed numerically to the required ac- 1 [#2 aty a+p
curacy, namely, 1(0,—1,—1;a,B,y)= %a [E—In Bty In By
2N 2N B 3
i E —Li, —ﬁ;; —Li, —;Jri;
Bl|-———|+1,2N—|—— —1) (22) (29
1+¢ 1+¢ (see also Ref6]), where Lp(z)=— f5dy y tIn(1—y) is the

dilogarithm function.
As said, the expressiofi2) is not applicable for the case
m=n=—1. Instead, one gets

(respectively, point®,; andP, in Fig. 1). Then the recursion
(21) is used to generate all needed starting points to use tl]e_
recursion(20) leftwards (downward$ if a>B(a<pB). Fi- N
nally, theB’s obtained in this way are introduced in E43). al(0,—1,—1:a,B8,7)+ BlI(—1,0~1;a,8,7)
To generate the two initiaB’s one can compute the integral
in Eq. (18) by Gauss-Legendre quadrature. To optimize the ) B
computation of the quadrature a change of variable is tN(=1-10a.8.7)= - (27)
needed. First, we use the symmetryBfi,m) to render O ] ] . )

7T2

[t—s=5(1)] explicit use of the expressiaf26).
The recursion(25), which in general is numerically un-
t if 0<z<0.8 stable upwards, can be used with stability to decrease the
s(t)= In(2-z-t) if 0.8<z=<0.99. (23 index! if «>0, which is the interesting case in physics. But

then, one needs as a starting point the integral with the high-
For values ofz greater than 0.99 the hypergeometric functionest wanted. As can be derived from Eq$8)—(10), that
can be computed using the transformation formula 15.3.11 ahtegral can be obtained through the computation of the
Ref. [16]. With the prescription above, more than fifteen quadrature
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TABLE I. Some values for the integralgl,m,—1;1,3,v). For instancel (20,15,-1;1,0.2,5)=2.9191066335088 10%6.

(B,7)

I=10,m=0

|(|,m,_l;l,ﬂ,’)’)

=10, m=5

I=20,m=15

=40, m=10

(0.05,0.05
(0.05,0.20
(0.05,1.00
(0.05,2.00
(0.05,5.00
(0.20,0.03
(0.20,0.20
(0.20,1.00
(0.20,2.00
(0.20,5.00
(1.00,0.03
(1.00,0.20
(1.00,1.00
(1.00,2.00
(1.00,5.00
(2.00,0.03
(2.00,0.20
(2.00,1.00
(2.00,2.00
(2.00,5.00
(5.00,0.03
(5.00,0.20
(5.00,1.00
(5.00,2.00
(5.00,5.00

2.509780389351p+ 07]
1.0069028364788+ 07]
2.123196803891p+ 06]
1.0610620020578+ 06]
4.243509860633[+ 05]
5.9511548712149+ 06]
2.5245340864968+ 06]
4.947997334679+ 05]
2.4501414762596+ 05]
9.773072164685p+ 04]
2.350693642427D+ 05]
6.8960382056488+ 04]
2.6754225852278+ 03]
9.718027497194p+ 02]
3.592165433267p+ 02]
5.637410938757p+ 04]
1.519649275273F+ 04]
1.5320840275499+ 02]
1.682975589896[L+ 01]
4.3389324770986+ 00]
8.927236851167p+ 03]
2.3569834307325+ 03]
1.513812816837F+01]
3.222032892132p— 01]
3.497079497364p— 03]

1.1550294761619+ 14]
4.985665558915p+ 12]
6.136289039788p+ 11]
3.013428835391[+ 11]
1.1992798691248+ 11]
1.4149826065364+ 12]
3.809611720910F+ 11]
7.1119098709184+ 10]
3.541472835589+ 10]
1.4149098737738+ 10]
2.1738100662595+ 08]
9.7511110023298+ 07]
2.0193624551498+07]
1.001341698492p+07]
3.9932069716804+ 06]
1.425097970905p+ 06]
4.760775187887+ 05]
3.899889990279f+ 04]
1.628655884419p+ 04]
6.145254399627p+ 03]
2.0896049079214+ 03]
5.6914967826940+ 02]
6.1945864757004+ 00]
5.5803922147916— 01]
1.046545875428p— 01]

5.849669118416p+ 45]
1.1263701557234+ 41]
1.8814741050028+ 39
9.035581197794p+ 38]
3.5754444925655+ 38]
7.433329153696p+ 39]
1.568317114851p+ 38]
1.501977810693p+ 37]
7.343236015851B+ 36]
2.9191066335088+ 36]
1.8638785541149+ 30]
7.004308296913p+ 29]
1.499283669073f+ 29]
7.513022948604p+ 28]
3.007004181442p+ 28]
9.1546004403515+ 24]
1.4095247283656+ 24]
7.978225668455[+ 22]
3.5727727922307+ 22]
1.3850914702518+ 22]
1.295848575662[L+ 18]
1.0121437234638+ 17]
2.8220667212488+ 13]
1.0214473659965+ 12]
2.1723867163698+ 11]

3.726393088040p+ 65
1.5245149068468+ 64]
2.544550076417p+ 63]
1.2652815721954+ 63]
5.0533341605295+ 62]
4.6331742767202+ 61]
1.361753458118p+ 61]
2.7821828122708+ 60]
1.392160405358B+ 60]
5.569848244632[L+ 59]
1.389674537791[L+ 53]
2.209232651538f+ 51]
1.5383073655665+ 49]
6.957328053903p+ 48]
2.7138972320215+ 48]
2.9503794635968+ 49]
1.913094873318D+47]
8.867580059291p+ 40]
8.6310437705915+ 39]
2.9003763096969+ 39]
4.7703597474580+ 44]
2.4003665222216+ 42]
8.7853148834688+ 33]
1.161297833311F+ 28]
1.6228394644288+ 24]

(0, =1=LieBy) in 1+ 227 it a>(1/10) (B+7)
2 |+lfldth 2 2B 1) s(t) = 2a _
2\ Bty o t Bty Bty t) |n(1+a+Ln{'8’Y}—t) otherwise

28) 2(B+7y) 0

where we have defined produces the accuracies shown in Table Il. FerlO (re-

TABLE II. Number of stable figureg—log,(relative-error) in

1 (a+b+2(y—1))(a—b+2y) I(l,—1,—1;a,B8,7) obtained using different numbers of Gauss-
G(a,byy)= ESRRLL b)(a—bt2 Legendre pointsNg,) in the quadraturé28) with the prescription
(aty) (a+b)(a=b+2) (30). The ratio B/« moved in the rang¢0.01,1d], and y/a in
[ m m [104,10%].
S i aty aty
m=1 M| \a+b a—b+2 | Ng =10 Ng =16 Ng =24 Ng =32
a+y m a+y m 5 5.9 8.9 111 12.6
- a_b+2y) - a+b+2(y_1)) } . 6 6.1 9.4 121 13.9
7 5.6 9.6 12.9 14.9
(29) 8 5.6 9.7 13.6 15.4
9 5.9 10.3 14.1 15.3
Note that the integrand is positive, and that the sum in the 10 54 9.3 14.4 15.3
functionG, is very efficiently computed in a single loop. For 15 5.1 8.7 14.0 15.2
values ofa, B, and y of the same order of magnitude the 20 5.2 8.3 13.6 15.0
guadrature converges very quickly for not very small values 25 4.7 8.2 12.9 14.9
of I(I>5). This is not the case when one of the parameters is 30 5.0 8.1 12.1 14.8
larger than the other, but then a simple change of variable 35 47 75 11.4 14.8
helps to recover convergence. For instance, the following 40 45 7.0 11.0 14.6

prescription of changes of variablée— s=s(t) ]
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TABLE Ill. Some values for the integralgl,—1,—1;1,3,7). For instance| (10,—1,—1;1,0.01,105 3.2854418466598 10
I(I,-1,-1;18,%)

By =10 =20 =30 1=40
(0.01,0.01 6.6191662489867+ 06] 3.6251447231256+ 18] 3.2983926561168+ 32] 8.5733728363337+47]
(0.01,0.20 1.7540859652228+ 06] 5.3112685642066+ 17] 3.3942282862188+ 31] 6.985746509709[+ 46]
(0.01,0.50 6.8609259644037+ 05] 2.015530223532p+17] 1.3180581225248+ 31] 2.7475204208958+ 46]
(0.01,1.00 3.3243271983196+ 05] 9.993761739172p+ 16] 6.5672190824270+ 30] 1.3709460938605+ 46]
(0.01,2.00 1.6469713752668+ 05] 4,9876597990304+ 16] 3.2808597542740+ 30] 6.8512909302258+ 45]
(0.01,5.00 6.5729176667975+ 04] 1.9940611043105+ 16] 1.3120390818058+ 30] 2.7401331921302+45]
(0.01,10.00 3.2854418466598+ 04] 9.969593894887R2+ 15] 6.559978222461F+ 29] 1.3700392619726+ 45]
(0.20,0.20 4.5604766596349+ 05] 3.512768969551B8+ 16] 4.906359525109[L+ 29] 2.0412224928657+ 44]
(0.20,0.50 1.4318580613654+ 05] 7.2132201828707+ 15] 8.1925006515660+ 28] 3.0132668197157+43]
(0.20,1.00 6.1814890074087+ 04] 3.256627762279p+ 15] 3.8027988040087+ 28] 1.4138666122607+43]
(0.20,2.00 2.965103447116[1+ 04] 1.5963963424310+ 15] 1.871821128257p+ 28] 6.970788127572p+42]
(0.20,5.00 1.1742458080974+ 04] 6.3522447488220+ 14] 7.4555535110628+ 27] 2.7776640095065+ 42]
(0.20,10.00 5.8633250910678+ 03] 3.1737770991220+ 14] 3.725533461500[L+ 27] 1.3880777482000+42]
(0.50,0.50 2.7602780782408+ 04] 2.1429404549106+ 14] 3.1095312824899+ 26] 1.360202784752F + 40]
(0.50,1.00 7.8596287095799+ 03] 4.2261129342848+ 13] 5.2077776493094+ 25] 2.0657542275279+ 39]
(0.50,2.00 3.290665236719D+ 03] 1.8845025819044+ 13] 2.3675994785514+ 25] 9.458379141398p+ 38]
(0.50,5.00 1.2667740672550+ 03] 7.3501151392020+12] 9.260202050377[L+ 24] 3.7039195719454+ 38]
(0.50,10.00 6.3029915005908+ 02] 3.6623979936588+ 12] 4.6157947923024+ 24] 1.8465337659004+ 38]
(1.00,1.00 9.2233071085062+02] 3.9012855025168+ 11] 3.136738076828R+ 22] 7.650030797538B+ 34]
(1.00,2.00 2.1119403628357+ 02] 6.556907148922p+ 10] 4.6001747109760+ 21] 1.0314129070250+ 34]
(1.00,5.00 7.2422587486309+ 01] 2.359605191383[L+ 10] 1.6728442527147+ 21] 3.766688858502P+ 33]
(1.00,10.00 3.5623476884278+ 01] 1.1649070967644+ 10] 8.2662607382138+ 20] 1.8620745501178+ 33]
(2.00,2.00 8.9219060942228+ 00] 6.4071580456640+07] 8.8443126974508+ 16] 3.7177770572299+ 27]
(2.00,5.00 1.339715657273[+ 00] 7.4723481641427+ 06] 9.1598047862917+ 15] 3.5719240038509+ 26]
(2.00,10.00 6.2645017020798— 01] 3.544853650932p+ 06] 4.3596533454989+ 15] 1.7025891413660+ 26]
(5.00,5.00 3.769761544604D— 03] 2.6042296175688+01] 3.486101910618R+07] 1.4250284687126+ 15]
(5.00,10.00 6.865356846344D— 04] 3.7115610730907+ 00] 4.4359819939145+ 06] 1.6880938843748+ 14]

(10.00,10.0D 4.5242997355095— 06] 7.2459128782254—05] 2.2554462512897—01] 2.1460242640172+ 04]

spectively, 20, 30, and 40@nore than 3800 integrals per sec- 1 Bty Bty
ond (respectively, 2500, 1800, and 140Qere obtained with 1(0,—1,—1ia,B,7)= 5{72—2“2 praray] Rl vy
more than fourteen stable figuréd2 Gauss-Legendre points,
see Table Il in an inexpensive computéa PC with a 200 at+B  (a+B)(aty)
MHz processox —In— (a—v)2
The prescription(30) is not useful if bothg and v are
much smaller tham (e.g., 8, y<0.0lx). However, the inte- & (atpB)(aty)
grals for this case can be safely generated without significant a (a—pB)?
loss of accuracy using the recursi@@b) upwards. The rela-
tive error in thelth integral accumulated because of cancel- +21n Bty In (atB)laty)
lations, which grows witH, can be then approximated as a (a=B)(a=7)|
(32
w2 1l (machine precision where the dilogarithm function can be computed through the
el —1-1))= 7 —m1 0 —-1-1) (31)  expansion Li(x)=3_, x*/k?. Forx<0.02, corresponding

to B,y<0.0la, eight terms in this expansion are enough to
obtain sixteen stable figures.
A few particular cases of(l,—1,—1) are readily ob-

—1_1- |
For example,I(GO, L, 1’1’0'01’9'01%0'76& 60, and t?ined from the recursio(25). Indeed, fore=0 andl=0 we
the relative error due to cancellations in the repeated use Wave

Eq. (25) to obtain this integral is only about three times the
machine precision. For smaller values @fand v the accu-
racy is bigger. Note that Eq26) is not appropriate to evalu-
atel(0,—1,—1) whenpB and y are smaller tharv. A better
expression for this case is

1

+91(1,-1,0,08,9)]. (33
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The specific caser= 8=y reads V. SUMMARY

I Some recurrence relations to compute the intedalfor
I(1,-1,-1;a,a,a)= _'H_lsl , (34) all negative integer parameters (n, andn) have been pre-
(2a) sented. The stability of these recursions has been investi-
gated, and algorithms have been given to use them without
loss of accuracy due to cancellations. The integrédlsm,
m —1;a,B8,y) (wherel,m=0) can be generated at low com-
2 (35) putln_g cos_t. For the |ntegrals(l,—l,—1;a,,8,_y) a qgadra—
I+m+1 ture involvingN+ 1 terms is needed, wheklis the highest
requiredl and « is assumed to be positive. Specially simple
are to be computed only once. Aet 100 one does not need algorithms are given for the caséf,m,—1;a,a,y), I(l,
more than 52 terms to achieve sixteen stable figure§ in —1,—1;08,7), I(l,-1,—-1,¢,@,a), and I(I,—1,
without using any numerical procedure to accelerate conver=1;«,0,0).

gence. The first of these coefficientsSig= 72/6. Finally, for
I(I,—1,—1;«,0,0) one has ACKNOWLEDGMENTS
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